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In four-dimensionalN = 4 supersymmetric gauge theory, we obtain an exact metric on
the moduli space of quantum vacua and analyze the spectra of BPS states in weak as
well as in strong coupling regions. Identifying the hypermultiplet of the dyonic state as
a string stretched between D3-brane probe and a 7-brane, we demonstrate that the two
hypermultiplets, which become massless at two singularities in supersymmetric theory,
correspond to open strings beginning on the D3-brane and ending on the respective
7-brane.
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1. INTRODUCTION

Recently, some major progress has been obtained in the understanding of dy-
namics ofN = 1 supersymmetric gauge theories of monopoles and dyons in four
dimensions (Rajputet al., 1991; Seiberg, 1994) and some important results have
been obtained (Gukov and Polyubin, 1997; Terashima and Yang, 1997; Witten
and Seiberg, 1994) about their strong coupling by using holomorphic properties
of the superpotential and gauge kinetic function (Intriligator, 1994; Intriligator
and Seiberg, 1994; Seiberget al., 1994) culminating in Seiberg’s nonabelian du-
ality conjecture (Argyreset al., 1996; Seiberg, 1995). Following this work, huge
progress has been made during last couple of years in understanding the four-
dimensionalN = 2 supersymmetric gauge theories. Recently, we have undertaken
(Joshiet al., 2000; Singh and Rajput, 1999a) the study of monopoles and dyons
in four-dimensionalN = 2 and inN = 4 supersymmetric theories and obtained
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(Joshiet al., 2001; Singh and Rajput, 1999b) complete BPS spectra by analyzing
the kinematics and monodromies around singularities in quantum moduli space
without as well as with hypermultiplets. The ability to make exact statements
(Bilal and Ferrari, 1996) in these four-dimensional strongly coupled field theories
makes them interesting in the laboratories where various ideas about quantum
field theory can be tested and the existence of monopoles and dyons possibly
verified.

The interplay between the space time symmetries and world sheet symmetries
for the BPS states as first studied (Callanet al., 1991) in connection with the
heteriotic instantons and solitons and its analysis as performed (Gauntlettet al.,
1993; Khuri, 1992) for the five-branes and the related H-monopoles. Properties
of electrically charged supersymmetric solutions have been compared with the
properties of the states in string theories (Sen, 1995) and many of the electrically
charged solutions have been interpretted as string states (Duff and Rahmfeld,
1995). In string theory,N = 2 SU(2) supersymmetry has been analyzed (Bank
et al., 1996; Bergman and Fayyazuddin, 1998) as the low energy theory on a
D3-brane probe in the background of an orientified 7-plane (Ä7).

This paper is organized as follows. In section 2, we have analyzed the structure
of scale invariantN = 4 theory in the absence of hypermultiplets and interpret
the singularities. In section 3, we have carried out the study of moduli space
vacua in four-dimensionalN = 4 supersymmetric theory with gauge group SU(2)
and analyzed its kinematics at classical as well as quantum levels. Analyzing the
monodromies around singularities in quantum moduli space, the spectrum of BPS
states of dyons have been obtained in weak coupling regionRW and the strong
coupling regionsRS and it has been shown that in the absence of hypermultiplets
(i.e., quarks) the weak coupling spectrum contains all dyons (n, 1) while the
strong coupling spectrum consists of monopoles (0, 1) and dyons (1,±1). It has
been demonstrated that, in the presence of hypermultiplets, the duality in the
theory with nonzero bare masses is really an electric–magnetic-flavor duality. It
is shown that forNf = 1 (single flavor) the theory exhibits,Z3-symmetry, and the
massless states (0, 1), (−1, 1), (1, 1), and (−2, 1) exist both in the weak and strong
coupling regions. It has been shown that the strong coupling region, forNf =
2 case, consists of only oneZ2-pair incorporating monopoles±(0, 1) and dyons
±(±1,−1) while that forNf = 3 case it consists of dyons±(−1, 2),±(1,−1) and
monopoles±(0, 1). Identifying a (ne, nm) hypermultiplet of dyonic state in the
probe theory as a (ne, nm) string stretched between the D3-brane probe and a 7-
brane, it has been demonstrated that two hypermultiplets, which become massless
at the two singularities inN = 4 SU(2) supersymmetric theory, correspond to open
strings beginning on the D3-brane and ending on the respective 7-brane. It has also
been shown that other than these two multiplets, all the BPS states, including
W-bosons, correspond to multipronged strings connecting the D3-brane with the
two 7-branes.
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2. CURVE FOR SCALE INVARIANT N = 4
SUPERSYMMETRIC THEORY

In the absence of bare masses, this theory is conformally invariant. This theory
has a dimensionless coupling constant (Witten and Seiberg, 1994),

τ = θ

2π
+ 4π i

g2
. (2.1)

Therefore, in the curvey2 = F(x, u, mi , τ ) that controls the low energy behavior,
the coefficients are functions ofτ that must be determined. This contrasts with
Nf < 4 where, instead ofτ , one has the renormalization scale3; dimensional
analysis ensures that the dependence on3 is polynomial, so that there are only
finitely many parameters to determine.

We assume the massless case for finding the right family of curves for the
conformally invariant theory, that is when the bare mass is zero. In this case classical
formula

a(u) =
√

2u,
(2.2)

aD(u) = τa =
(
θ

2π
+ 4ππ

g2

)
a,

is exact. So we wish to find a curve

y2 = F(x, u, τ ),

such that the differential form

ω =
√

2

4π

dx

y
, (2.3)

has the periods (∂aD(u)
∂u , ∂a(u)

∂u ), with (aD(u), a(u)) given by Eq. (2.2).
Now, a genus one curve E and a differential form with periods a multiple of (τ, 1)
can be found as follows. Let E be the quotient of the complexz-plane by the lattice
generated byπ andπτ . Letω0 = dz. Obviously, the periods ofω0 areπ andπτ ,
integrated on contours that run from 0 toπ and from 0 toπτ .

For analyzing an algebraic description on E, one introduces the Wieerstrass
℘ function, which obeys

℘(z) = ℘(z+ 1)= ℘(z+ π ) = ℘(−z), (2.4)

and has for its only singularity on E a double pole at the origin. If one setsx0 =
℘(z), y0 = ℘ ′(z), then one finds

y2
0 = 4x3

0 − g2(τx0)− g3(τ ), (2.5)

where

g2 = 60π−4G4(π ),

g3 = 140π−6G6(π ),
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andG4, G6 are the usual Einstein series

G4(π ) =
∑

m,n∈z6=0

1

(mτ + n)4
,

(2.6)

G6(π ) =
∑

m,n∈z6=0

1

(mτ + n)6
,

which defines modular forms for SL (2,Z) of weight 4 and 6, respectively. Since
the definition ofx0 andy0 was such thaty0 = dx0

dz , one can also rewrite

ω0 = dz as ω0 = dx0

y0
. (2.7)

Now, set

x = x0u y= 1

2
y0u3/2,

and (2.8)

ω =
√

2/u

2π
ω0 =

√
2

4π

dx

y
.

The equation for the curve becomes

y2 = x3− 1

4
g2(τ )xu2− 1

4
g3(τ )u2. (2.9)

This change of variables and in particular the normalization ofu is motivated by the
following requirement. For weak coupling (τ → i∞) we should recover our curve
y2 = F0(x, u) = x2(x − u). It is easy to check from the asymptotic behaviorg2 =
4
3 + O(q),g3 = 8

27 + O(q) that after replacingx in Eq. (2.9) byx − 4/3 we findF0.
The period ofω is now 1

2

√
2/u(1, τ ) for N = 4 and, one has

a(u) =
√

2u,
(2.10)

aD(u) = τa,

as desired. We have determined the curve for the massless theory. The coefficients
are in modular forms. This test is equivalent to the fact that the metric of the
classical theory is S-dual, which is one of the traditional pieces of evidence for
S-duality.

We recall thatN = 4 symmetric Yang–Mills can be regarded asN = 2 super
Yang–Mills theory with an additional matter field that is a hypermultiplet in the
adjoint representation of the gauge group. One can give a bare massm—to that
hypermultiplet, explicitly breakingN = 4 to N = 2. We analyze the theory for
gauge group SU(2). For weak coupling region|q| ¿ 1, with m 6= 0. There is one
singularity atu ≈ 1

4m2 where a component H of the elementary hypermultiplet
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is massless. This gives a monodromy conjugate toT2. Since the elementary hy-
permultiplet forN = 4 has twice the electric charge of the hyperdoublets. As a
hyperdoublet gives monodromyT , and the one loop beta function, which deter-
mines the monodromy is proportional to the square of the charge, the massless
H particle would give monodromyT2 in the conventions ofN = 4. In addition,
at an energy of order30 ∼ q1/4m, the theory evolves to a strongly coupled pure
N = 2 gauge theory. This theory has two singularities, associated with massless
monopoles, with monodromies conjugate toT2. So altogether, we get three sin-
gularities, each conjugate toT2. These three singularities are permuted under
monodromies inq andm. This is a reason theN = 4 conventions in which they
are all conjugate toT2 are preferable to theNf 6= 0 conventions in which one is
conjugateT4 and the other toT .

This analysis is valid for very weak coupling. Could it be, for instance, that
what we described above as one conjugate toT , separated by an amount that van-
ishes for weak coupling. SL (2,Z) group theory alone would permit this, but it is
impossible because each of the singularities arises when a single hypermultiplet
becomes massless. So we are looking for a family of curves

Y2 = F(x, u), (2.11)

(with cubic F) that asu varies has precisely three singularities each conjugate to
Y2. There is a singularity atu0 with monodromyTn for n > 1 (will be 2) if and
only if for somex0,

F = ∂F

∂a
= ∂F

∂u
= 0, (2.12)

at x = x0, u = u0. Eq. (2.12) means that the curveF(x, y) = 0 has a singularity
at (x, u) = (x0, u0).

We analyze a plane cubic curveF(x, u) = 0 with three distinct singularities.
The possible singularities of a plane cubic curve can be completely classified. IfF
is an irreducible polynomial, there is at most one singularity. IfF1F2, with F1 linear
in x andu andF2 quadratic and irreducible, there are precisely two singularities
(perhaps at infinity), namely the points whereF1 = F1 = 0. The only way to get
three singularities is to haveF = F1F2F3, where the three factors are linear; the
three singularities are the pointsFi = Fj = 0 for any two distincti and j . For
reproducing the knownm= 0 limit of F , the Fi must be (up to a scalar multiple
and a permutation ofi ) Fi = x − ei u− Fi , whereFi are the functions ofm and
τ only and vanishes atm= 0 andei being the roots of the cubic polynomial (2.5)
obeye1+ e2+ e3 = 0.

Moreover, by adding constants (that is, functions ofm andτ only) to x and
u, one can eliminate two of theFi . Since we did not assign any physical meaning
to x we can take the freedom to shift it. However, we want to preserve

u = 〈Trϕ
2〉. (2.12a)
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Therefore, we will denote the shiftedu by ũ. To keep symmetry under permuting
theei , we shiftx andu such thatfi = e2

i f . Then the equation of mass-deformed
N = 4 theory becomes

y2 = (x − e1ũ− e2
1 f
)(

x − e2ũ− e2
2 f
)(

x − e3ũ− e3
3 f
)
, (2.13)

the relation betweenu and ũ is determined by examining the theory at weak
coupling; i.e., in the limitτ → i∞. In this limit we should reproduce on weak
coupling curvey2 = E0 = x2(x − u). This motivates us to change variables to

ũ = u− 1

2
ei f

(2.14)

x = x − 1

2
ei u+ 1

2
e2

1 f,

in Eq. (2.13). The family of curves becomes

y2 = (x − c1u)(x + c2u− c1(c1+ c2) f )(x − c2u+ c2(c1+ c2) f ), (2.15)

with

c1 = 3

2
e1 and c2 = 1

2
(e3− e2).

In this form it is easy to study the weak coupling limit. For a smooth limit,f0 =
f (τ = i∞) should be finite. Usingc1(τ = i∞) = 1 and c2(τ = i∞) = 0, the
exact curve (2.15)

y2 = F0 = x2(x − u),

as required. And so in the form (2.15) the family of curves is expressed in terms
of Eq. (2.12a).

We can relatef0 = f (τ = i∞) to the mass by examining the singularities of
(2.15). The roots of the equation are atx1 = c4

1 andx2,3= ±c2(−u+ (c1± c2) f ).
A singularity occurs whenxi = xj . This occurs for

u1 = 3

2
ei f = c1 f,

(2.16)

u2,3 = ±1

2
(e3− e2) f = ±c2 f.

In the weak coupling limitc1 ≈ 1, c2 ≈ 8q1/2 and haveu1 ≈ f0 and u2,3≈
±8q1/2 f0. We interpret the singularity atu1 as associated with the massless el-
ementary field. It should be ata = m/

√
2. For weak coupling and in theN = 4

normalization this is atu ≈ 1
2a2 = m2/4.

Therefore

f0 = f (τ = i∞) = m2

4
. (2.17)
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The other two singularities atu1,2≈ ±8q1/2 f0 are interpreted as the two singu-
larities of the low energy pure gaugeN = 2 theory. More precisely, we can now
take the scaling limitq→ 0, f0 = m2

4 →∞ holding32 = 2q1/2m2 fixed. In this
limit, Eq. (2.15) becomes

y2 = (x − 4)(x2−34), (2.18)

which is exactly the curve of the expected low energy pure gaugeN = 2 theory in
the N = 4 conventions with scale3. The curve (2.13) governing the low energy
behavior of the mass-deformedN = 4 theory can be written as

y2 =
(

x − e1ũ− 1

4
e2

1m2

)(
x − e2ũ− 1

4
e2

2m2

)(
x − e3ũ− 1

4
e2

3m2

)
, (2.19)

with

f = 1

4
m2, and u = 〈Trϕ2〉 = ũ+ 1

8
e1m2. (2.20)

This formula is completely SL (2,Z) invariant; the coefficients are modular forms.
Since the formula is not limited to weak coupling, this SL (2,Z) invariance is a
genuine, new, strong coupling test of SL (2,Z) invariance of theN = 4 theory.

3. QUANTUM MODULI SPACE AND MONODROMIES AROUND
THE SINGULARITIES IN N = 4 SUPERSYMMETRIC THEROY

The classical potential ofN = 4 supersymmetric theory in the absence of
hypermultipletsNf = 0 is

V(φ) = 1

|g|2 tr{(φi , φi
+)(φ j , φ j

+)}, (3.1)

whereφ is the Higg’s field andg is the gauge coupling constant of the underlying
microscopic theory. As long asφ andφ+ commute, this potential vanishes even
for the nonvanishing expectation value ofφ;

〈0|φ|0〉 = a 6= 0.

It shows that the theory has a continuum of gauge in-equivalent vacua called the
classical moduli space parameterized by

u = trφiφ j = 1

2
a2, (3.2)

where for SU(2) gauge group, we have set

φ = 1

2
aσ3,
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with

σ3 =
(

1 0
0 −1

)
.

For genericφ, the low energy effective Lagrangian containing a singleN = 4
vector multiplet may be expressed in terms of holomorphic function

F(a) = 1

2
τcla

2, (3.3)

whereτcl, the classically effective coupling constant in the vacuum parameterized
by a, is defined as

τcl = 8π i

g2
= ∂2F

∂a2
, (3.4)

The dyonic charge and mass for BPS states may then be written in the following
forms (Singh and Rajput, 1999b) respectively;

q = (ne, nm) =
√

2

(
ne− 8π i

g2
nm

)
=
√

2(ne− τclnm), (3.5)

and

M = a|q| = a
√

2|ne− τclnm|, (3.6)

wherene andnm are electric charge and magnetic charge numbers respectively.
In coulomb phase, the gauge theory has massless photon and hence it is

subjected to standard electric–magnetic duality

q = (ne, nm)→ (−nm, ne) = − 1

τcl
q = q′, (3.7)

which incorporates the inversion ofτcl. On the other hand under the duality trans-
formation

τcl → τcl + 1 (3.8)

we have

q = (ne, nm)→ (ne− nm, nm) = q′. (3.9)

The transformations (3.7) and (3.8) generate an infinite duality group SL(2,Z).
The quantum theory also has a vacuum moduli space, the metric on which is

Kähler metric which may be written locally as

ds2 = − i

2
(daDdā− da dāD), (3.10)

where

aD = ∂F

∂a
. (3.11)
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Then Eq. (3.6), for mass of BPS state, may be written as

M =
√

2|Z|, (3.12)

where

Z = ane− aDnm, (3.12a)

is the central charge of the supersymmetric algebra. Herea is related byN = 4
theory to the semiclassical photon whileaD is related to its dual “the magnetic
photon.” The existence of a BPS state (ne, nm) at u in the moduli space implies
the existence of another BPS state (n′e, n′m) at u′ whenu andu′ are related by a
global symmetry acting on the moduli space, and the electric and magnetic charge
numbers are related as (

n′e
n′m

)
= G

(
ne

nm

)
, (3.13)

where matrixG ∈ SL(2, Z), generated by transformations (3.7) and (3.8), and
there exists a phaseeiω such that(

aD(u′)
a(u′)

)
= eiωG

(
aD(u)
a(u)

)
. (3.14)

The explicit form ofa(u) andaD(u) in terms of the period of a meromorphic
differential of the second kind on a genus surface can be written from Eq. (2.18) as

y2 = (x2−34)(x − u), (3.15)

where3 is the dynamically generated mass scale. This form gives a double cov-
ering of the plane branches at±32 and∞. On these cuts the correctly normalized
meromorphic one-form for this torus is

λ =
√

2

2π

∫
dx(x − u)

y
= 3
√

2

2π

∫
dx(x − u/32)1/2√

(x2− 1)
,

which yields

a(u) = 3
√

2

π

∫ 1

−1

dt
√ u
32 − t√

1− t2
,

and

aD(u) = 3
√

2

π

∫ u/32

1
dt

√ u
32 − t√
1− t2

, (3.16)

or

a(u)+ aD(u) = 3
√

2

π

∫ u/32

−1
dt

√ u
32 − t√
1− t2

.
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Representing these integrals in terms of the usual hyper-geometric function

F(α, β, γ ; x) = 1

B(β, γ − β)

∫ 1

0
(1− t)γ−β−1tβ−1(1− xt)−α dt,

whereB(β, γ − β) is the usual beta function, we get (Singh and Rajput, 1999b)

a(u) =
√

u+32

2
F

(
−1

2
,

1

2
, 1;

2

1+ u/32

)
,

(3.17)

aD(u) = i

√
u−32

2
F

(
1

2
,

1

2
, 2;

1− u/32

2

)
.

Near the point at infinity the asymptotic behaviors of these functions for3 = 1
are given by

a(u) ∼
√

u

2
,

(3.18)

aD(u) ∼ i

π

√
2u[ln u+ 3 ln 2− 2].

Near the branch pointu = +1 and u = −1 (for 3 = 1), the asymptotic be-
haviors of these functions are respectively given by the following sets of
equations;

a(u) ∼ i

2π

[
(u+ 1) ln

(
1+ u

2

)
+ u+ 1

2
(−iπ − 4 ln 2+ 3)

]
,

(3.19)

aD(u) ∼ i

π

[
−1+ u

2
ln

(
1+ u

2

)
+ u+ 1

2
(1+ 4 ln 2)− 4

]
,

and

a(u) ∼ 2

π
+ 1

2π

(
1− u

2

)[
ln

(u− 1)

2
+ 1− 4 ln 2

]
,

aD(u) ∼ i
u− 1

2
. (3.20)

From Eqs. (3.4) and (3.11) we have

τ11 = τcl = ∂aD

∂a
= i F

(
1
2, 1

2, 1, u−32

u+32

)
F
(

1
2, 1

2, 1; 232

u+32

) , (3.21)

which blows up at the cutsu = ±32.



P1: FZN

International Journal of Theoretical Physics [ijtp] pp518-ijtp-375271 June 12, 2002 9:17 Style file version May 30th, 2002

N = 4 Supersymmetric (Dyonic) Hypermultiplets in String Theory 1117

Let us inverta = a(u) asu = u(a) and then integrate Eq. (3.11) to get the
holomorphic functionF(a). If a matrix0 ∈ SL(2, Z) is taken as

0 =
(
α β

γ δ

)
, (3.22)

then

a′D = αaD + βa, a′ = γαD + δa, (3.22a)

which gives the following transformation of the period matrixτ11;

τ 1
11 =

β + ατ11

δ + γ τ11
(3.23)

These relations yield the following modular transformation of the homomorphic
function F(a);

F ′(a) = F0(a′) = 1

2
βδa2+ 1

2
αγa2

D + βγ aaD + F(a) (3.24)

For the transformation matrix

S=
(

0 1
−1 0

)
, (3.22b)

corresponding to the transformation (3.7), Eqs. (3.22), (3.23), and (3.24) give

a′D = aS
D = a; a′ = aS = −aD, (3.25)

τ 1
11 = τ S

11 = −1/τ11, (3.26)

and

F ′(a) = FS(aS) = −aaD + F(a). (3.27)

Similarly, for the transformation matrix

T =
(

1 1
0 1

)
, (3.22c)

corresponding to (3.9), we have

a′D = aT
D = aD + a; a′ = aT = a, (3.28)

τ 1
11 = τ T

11 = 1+ τ11, (3.29)

F ′(a) = FT (aT ) = 1

2
a2+ F(a). (3.30)

The transformation (3.7) incorporates the transformation of an electric charge (1, 0)
to a monopole (0, 1), i.e., it leads to the monopole-region. On the other hand, the
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transformation (3.9) incorporates the transformation of a monopole (0, 1) to a dyon
(−1, 1), i.e., it leads to the dyon-region. Equations (3.25) and (3.28) show that in
the monopole and dyon regions the natural independent variables to be used are

a(m) = aD, and a(d) = aD − a,

respectively, with the corresponding prepotentialsF (m)
(am) and F (d)

(ad) given by
Eqs. (3.27) and (3.30) respectively.

Monodromy is a transformation of the parameteru = 1
2a2 of the quantum

moduli space to the pointu0 where the mass of BPS state, as given by Eq. (3.12),
vanishes. Thus the values of (ne, nm) of the massless particle at singularity are
determined by the monodromy around the singularity, i.e.,

nea− nmaD = 0. (3.31)

The moduli spaceM may be divided in two regionRS and RW by a curveC of
marginal stability, i.e.,

C =
{
u ∈ M

/
Im
(aD

a

)
= 0

}
, (3.32)

The region insideC is the strong coupling regionRS while the region out side
C is the weak coupling regionRW. If two point u and u′ in M can be joined
by a continuous path inM without crossingC, then one can transformu into u′

without changing the spectrum. For instance, ifu′ = u0 (where the mass of BPS
state vanishes), then we have

(
a′D
a′

)
= M(ne, nm)

(
aD

a

)
, (3.33)

where

M(ne, nm) =
(

1+ 2nenm 2n2
e

−2n2
m 1− 2nenm

)
, (3.34)

without changing the spectrum. The curveC of Eq. (3.32) looks like an ellipse. The
massless BPS states can exist only on this curve and hence the monodromy trans-
formation can be constructed only on this curve. Atu = 32 = 1 the monopole is
massless and atu = −32 = −1 the massless state is dyonic described as±(1,−1)
if we approachu = −1 from upper half plane or as±(1, 1) if the pointu = −1
is approached from the lower half plane. As such the monopole±(0, 1) and the
dyon either as±(1, 1) or as±(1,−1) do exist in bothRW andRS and there is no
other state inRW andRS that becomes massless onC since there are precisely two
singularities,u = 1 andu = −1, where

aD

a
= ±1 or 0.
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At the singularityu = 1, the asympotic relations (3.19) gives Au: OK?

aD → a′D = aD,

and (3.35)
a→ a′ = a− 2aD.

Comparing these transformations with that given by Eq. (3.33), we get the follow-
ing monodromy matrix atu = 1

M1 =
(

1 0
−2 1

)
. (3.35a)

This monodromy arises from a massless monopole (0, 1). Under this monodromy
we have the following transformation of charges:

q = (ne, nm)→ (ne, nm+ 2ne) = q′. (3.35b)

Similarly, by using relations (3.20), we get the monodromy matrix

M−1 =
(−1 2
−2 3

)
, (3.36)

atu = −1. Under this monodromy

q = (ne, nm)→ (2nm− ne, 3nm+ 2ne) = q′. (3.36a)

This monodromy arises from the vanishing mass of dyon (1,−1). The mon-
odromy matrix atu = ∞ is

M∞ =
(−1 2

0 −1

)
, (3.37)

which incorporates the following transformation of charge

q = (ne, nm)→ (−ne− 2nm,−nm), (3.38)

showing that at infinity a monopole (0, 1) gains the electric charge and becomes
a dyon (−2,−1). Monodromy at infinity implies that there must be an additional
singularity somewhere inu-plane.

From Eqs. (3.35), (3.36), and (3.37), we obviously have

M1M−1 = M∞. (3.39)

These matrices form the subgroup0(2) ∈ SL(2, Z). In looping aroundu = 1 and
u = −1, the pair (aD, a) are transformed by monodromiesM1 and M−1 and the
charges (ne, nm) are transformed accordingly. But the spectrum of BPS saturated
states is not0(2) invariant. This lack of duality in the spectrum can be resolved if
the curve, on whichaD/a is real, looks some thing like|u| = 1. Then one can avoid
the jumping phenomena only if one stays in the regionu > 1. The only monodromy
that can be seen in that region isM∞, under which the spectrum of BPS saturated



P1: FZN

International Journal of Theoretical Physics [ijtp] pp518-ijtp-375271 June 12, 2002 9:17 Style file version May 30th, 2002

1120 Joshi, Singh, Pandey, and Rajput

states is invariant. Whatever particles becomes massless atu = ±1 must evolve
continuously from the BPS-saturated states that can be seen semiclassically near
infinity.

The strong coupling regionRS contains exactly two BPS states, the monopole
(0, 1) and dyon (1, 1) or (1,−1) that becomes massless atu = 32 or u = −32

while all dyons (n, 1), wheren is in integer, exist in the weak coupling regionRW

(Singh and Rajput, 1999b).
All the results of this section forNf = 0 can be generalized to the general

N = 4 supersymmetric Yang Mills theories with gauge group SU(2) when the
hypermultiplets are present. In the presence ofNf flavors withmf as the bare mass
of hypermultiplets (Qf , Q̄f ), the Eq. (3.12a) for quantized central charge may be
generalized in the following form

Z = ane− aDnm+ 1√
2

Nf∑
f=1

mfsf , (3.40)

wheresf is the quark number charge. In this case we have a singular point when
(Singh and Rajput, 1999b)

a = ± mf√
2
= a0,

which corresponds to quark becoming massless. The monodromy transformation
around this singularity is

a→ a = a′,
(3.41)

aD → aD + a− a0 = aD + a− mf√
2
= a′D,

showing that the pair (aD, a) is not simply transformed by SL(2,Z) but they also
pick up the additional constantmf . In the strong coupling region, thesf charges
contribute toa also. Under the transformation (3.41), we obviously have

s′f = nm+ sf ,

n′m = nm, (3.42)

n′e = ne− nm,

showing that the duality in the theory with nonzero bare mass is really an electric–
magneticsf duality.

In Nf = 1 case, the moduli space of vacua is homomorphic to the compactified
complexu-plane, and the SU(2) gauge group is broken down to U(1) on the
coulomb branch which exhibitsZ3-symmetry. The Higg’s branch is absent in this
case. For vanishing bare masses, the torus is

y2 = x3− ux2−32/64, (3.43)
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with da(1)
D /du andda(1)/du as its period integrals. Here the weak coupling region

RW contains all dyons (n, 1) as well as elementary quarks and W-bosons while the
strong coupling regionRS contains the monopoles±(0, 1) and dyons±(−1, 1)
and±(2,−1). ForNf = 2 case, in addition to Coulomb branch, the moduli space
also has a Higg’s branch on which the gauge group is completely broken. The
strong coupling regionRS in this case contains only oneZ2-pair incorporating
monopoles±(0, 1) and the dyons±(±1, 1). ForNf = 3 case, the equation of the
torus for vanishing bare mass is

y2 = (x − u)(x2− x + u). (3.44)

Here the strong coupling region contains the dyons±(−1, 2) and±(1,−1) and
the monopoles±(0, 1) while the weak coupling region contains the dyons (n, 1)
and (2n+ 1, 2) for all integern.

4. BPS SPECTRUM OF DYONIC STATES IN STRING THEORY

In general a (ne, nm) hypermultiplet dyon state in the probe theory corresponds
to a (ne, nm) string stretched between the D3-brane probe and a 7-brane. Such state
exists as long as there exists a path P along which the total monodromy transforms
the (ne, nm) charge of the string to the charge of the 7-brane. This state is BPS state
if the path corresponds to a (ne, nm) geodesic and it minimizes the mass given by

M =
∫

P
T(ne,nm) ds, (4.1)

where

T(ne,nm) = 1√
Im τ
|ne− nmτ |, (4.2)

is the tension of (ne, nm) string with τ as string coupling which corresponds to
effective coupling constant defined by Eq. (3.4) and (3.21). The (ne, nm) charges of
the string may change along the path P according to transformations (3.7) and (3.9)
if this path does not pass through any of the singularities. In case of singularities
at u = 32 andu = −32, these charges will change according to transformations
(3.35b) and (3.36a) respectively. ForNf = 0, the metricds2 is given by (Bergman
and Fayyazuddin, 1998)

ds2Im(τ )

∣∣∣∣ η2(τ )√
232/3

[(Z − Z1)(Z − Z2)]−1/2 dz

∣∣∣∣2 , (4.3)

whereZ1 = 432 andZ2 = −432 are the positions of (0, 1) and (1, 1) 7-branes,
respectively.

Using relations (3.4) and (3.21), in Eq. (4.2), we have

T(ne,nm) ds= |ne da− nm daD|, (4.4)



P1: FZN

International Journal of Theoretical Physics [ijtp] pp518-ijtp-375271 June 12, 2002 9:17 Style file version May 30th, 2002

1122 Joshi, Singh, Pandey, and Rajput

which implies that the geodesic for (ne, nm) string is

ne
da

dt
+ nm

daD

dt
= (ne− nmτ )

da

dt
= C, (4.5)

whereC is constant. For topologically trivial path which does not go around
7-branes, the solution of this equation is

nea{Z(t)} − nmaD{Z(t)} = C(t − 1), (4.6)

whereZ(0)= u is the position of the D3-brane andZ(1) is the position of (ne, nm)
7-brane. The mass can then be calculated as

M =
√

2|C| =
√

2|nea(u)− nmaD(u)|,
which is identical to Eq. (3.12). The only states which correspond to topological
trivial geodesic are (0, 1), (1, 1) hypermultiplets, as the charges of 7-branes. This is
consistent with the result, obtained in the previous section, that the BPS spectrum
in RS region consists of only (0, 1) and (1,±1) massless states.

W-boson i.e., (1, 0) state, corresponds to a pair of fundamental strings begin-
ning on the D3-brane and ending on ther 7-plane. Quantum corrections deform this
background in to two separated 7-branes with charges (0, 1), and (2, 1) and at the
same time the W-boson state is deformed accordingly. Most likely possibility is
that it is deformed into four-pronged strings with external prongs (1, 0), (1, 0), (0,
1), and (2, 1) and an internal prong (1, 1) such that the first two external prongs end
on the D3-brane, and the last two end on the corresponding 7-branes. Supersym-
metry requires that the two (1, 0) strings be parallel at the location of the D3-brane.
This condition is satisfied for the four-pronged string configuration if the internal
(1, 1) string shrinks to zero length. Denoting the locations of (0, 1) 7-brane, (2, 1)
7-brane and the D3-brane byZ1, Z2, andZ3 respectively, and the location of the
two coincident junction points byu, we have following three geodesic

P1 : aD{Z(t1)} = c1t1+ aD(u),

P2 : −2a{Z(t2)} − aD{Z(t2)} = c2t2− 2a(u)− aD(u), (4.7)

P3: a{Z(t3)} = c3t3+ a(u),

wheret1, t2, andt3 respectively parameterize the geodesics for (0, 1), (2, 1), and
(1, 0) strings andti = 0 corresponds to the position of junction whileti = 1 cor-
responds to the position of the brane. In Eqs. (4.7) we have set up

C1 = −aD(u),

C2 = 2a(u)+ aD(u) (4.8)

C3 = a(Z3)− a(u),
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and

nea− nmaD = 0,

at the location of (ne, nm) 7-brane. Because of the orientation of (1, 0) string at the
flat space, the supersymmetry requires that

C1

|C1| =
C2

|C2| =
C3

|C3| . (4.9)

Using Eqs. (4.8) and the first equality of (4.9), we have

Im
aD(u)

a(u)
= 0, (4.10)

and

aD(u)

a(u)
> −2, (4.10a)

which requiresu to be on the curve of marginal stability defined by Eq. (3.32).
Equations (4.8) and the second equality of (4.9) imply that

Im
a(Z3)

a(u)
= 0, (4.11)

and

a(Z3)

a(u)
> 1, (4.11a)

showing that the pointZ3 lies in weak coupling regionRW. In other words, the
state corresponding to the four-pronged string is BPS-state only when D3-brane is
in RW region. At Z3 = u, the D3-brane is exactly on the curve of marginal stability
and then the (1, 0) prongs will degenerate and the remaining (0, 1) and (2, 1) strings
will separate along the D3-brane.

The total mass is the sum of four individual prong masses;

M = |C1| + |C2| + 2|C3|
=
√

2|a(Z3)|,
which is the BPS mass of the W-boson.

In addition to W-bosons and the two hypermultiplets (0, 1) and (1, 1), the
BPS spectrum inRW-region also includes hypermultiplets carrying charges (n, 1)
with n > 1. These states can be obtained from (0, 1) and (1, 1) states by applying
the monodromy transformations (3.35b) and (3.36a).
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5. DISCUSSION

The Eq. (2.13) describes the equation of mass-deformedN = 4 theory which
may be written as Eq. (2.15) by changing the variables given by Eq. (2.14). This
equation further reduces to the form given by Eq. (2.18) under conditions de-
scribed by Eqs. (2.16) and (2.17). Equation (2.18) is the curve of the expected
low energy pure gaugeN = 2 theory in theN = 4 convention. In the absence
of hypermultiplets, the explicit forms ofa andaD given by Eq. (3.33) in terms
of hypergeometric functions show that the branch pointsu = ±1 andu = ∞ are
the singularities of the moduli space, for which the monodromy matrices given
by Eqs. (3.35a), (3.36), and (3.37) generate the transformations of parameteru of
quantum moduli space to another point at which the BPS state become massless. It
shows that the singular points of moduli space are associated with extra massless
particles. MonodromyM1, given by Eq. (3.35a) arises from the massless monopole
of charge (ne, nm) = (0, 1) and the corresponding transformations (3.35b) trans-
forms the electron (0, 1) nearu = 1 to a dyon (1, 2). The monodromy (3.36) arises
from the vanishing mass of dyon (−1, 1) and the corresponding transformations
(3.36b) transform an electron to a dyon (−1, 2) and a monopole (0, 1) to a dyon
(−2, 3). Under the monodromy (3.37) at infinity, the charge transforms according
to Eq. (3.38) showing that at this singularity a monopole (0, 1) gains the elec-
tric charge and becomes a dyon (−2,−1). This monodromy at infinity implies
that there must be an additional singularity somewhere isu-plane. For instance,
a monopole becomes massless at a point whereaD = 0 while a 6= 0 and a dyon
with charge (−1, 1) becomes massless ifa+ aD = 0 whilea, aD = 0.

The matrices, given by Eqs. (3.35a), (3.36), and (3.37) are the three generators
of monodromies at the pointsu = 1,−1, and∞ respectively, where the complex
u-plane is punctured. The pair (aD, a) forms a holomorphic section of SL(2, Z)
bundle over the puncturedu-plane. These matrices generate the subgroup0(2) ∈
SL(2, Z) of 2× 2 matrices congruent to unit matrix modulo 2. In factM∞ and
M1 do penetrate0(2). Theu-plane punctured at 1,−1, and∞ can be thought of
as the quotient of the upper planeH/0(2). The family of curves parameterized by
H/0(2) can explicitly be described by Eq. (3.15), for3 = 1, which is symmetrical
under the mapping

u→−u, x→−x, y→±iy.

These transformations generateZ4 symmetry, but only itsZ2 quotient acts on
u-plane. In looping aroundu = 1 andu = −1, the pair (aη, a) are transformed by
the monodromiesM1 andM−1 and the charges (ne, nm) are transformed accord-
ingly. But the spectrum of BPS saturated states is not0(2) invariant. This lack of
duality in the spectrum can be resolved if the curve, on whichaD/a is real, looks
something like|u| = 1. Then one can avoid the jumping phenomena only if one
stays in the regionu > 1. The only monodromy that can be seen in that region
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is M∞, under which the spectrum of BPS saturated states is invariant. Whatever
particles become massless atu = ±1 must evolve continuously from the BPS—
saturated states that can be seen semiclassically near infinity. It follows from the
foregoing analysis that the entire BPS spectrum in strong coupling as well as weak
coupling regions can be accounted for in D3-brane probe picture, either as open
strings or topologically geodesics between the D3-brane and a single 7-brane, or
as multipronged strings connecting the D3-brane to both 7-branes. The former cor-
respond to hypermultiplets carrying charges (0, 1) and (1, 1) and exist everywhere
in the moduli space. The latter correspond to the W-bosons and hypermultiplets
carrying charges (n, 1) for (n > 1), and exist only in the weak coupling region
(i.e., out side the curve of marginal stability). It has also been shown here that for
W-boson the multipronged string is the unique BPS representation and there are
no topologically nontrivial geodesics beginning and ending on the D3-brane.
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