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N = 4 Supersymmetric (Dyonic) Hypermultiplets
in String Theory
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In four-dimensionaN = 4 supersymmetric gauge theory, we obtain an exact metric on
the moduli space of quantum vacua and analyze the spectra of BPS states in weak as
well as in strong coupling regions. Identifying the hypermultiplet of the dyonic state as

a string stretched betweenyrane probe and a 7-brane, we demonstrate that the two
hypermultiplets, which become massless at two singularities in supersymmetric theory,
correspond to open strings beginning on thelPane and ending on the respective
7-brane.
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moduli space; open-string.

1. INTRODUCTION

Recently, some major progress has been obtained in the understanding of dy-
namics ofN = 1 supersymmetric gauge theories of monopoles and dyons in four
dimensions (Rajpugt al., 1991; Seiberg, 1994) and some important results have
been obtained (Gukov and Polyubin, 1997; Terashima and Yang, 1997; Witten
and Seiberg, 1994) about their strong coupling by using holomorphic properties
of the superpotential and gauge kinetic function (Intriligator, 1994; Intriligator
and Seiberg, 1994; Seibeeg al., 1994) culminating in Seiberg’s nonabelian du-
ality conjecture (Argyreet al,, 1996; Seiberg, 1995). Following this work, huge
progress has been made during last couple of years in understanding the four-
dimensionaN = 2 supersymmetric gauge theories. Recently, we have undertaken
(Joshiet al,, 2000; Singh and Rajput, 1999a) the study of monopoles and dyons
in four-dimensionaN = 2 and inN = 4 supersymmetric theories and obtained
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(Joshiet al,, 2001; Singh and Rajput, 1999b) complete BPS spectra by analyzing
the kinematics and monodromies around singularities in quantum moduli space
without as well as with hypermultiplets. The ability to make exact statements
(Bilal and Ferrari, 1996) in these four-dimensional strongly coupled field theories
makes them interesting in the laboratories where various ideas about quantum
field theory can be tested and the existence of monopoles and dyons possibly
verified.

The interplay between the space time symmetries and world sheet symmetries
for the BPS states as first studied (Calkstnal, 1991) in connection with the
heteriotic instantons and solitons and its analysis as performed (Gaemtibit
1993; Khuri, 1992) for the five-branes and the related H-monopoles. Properties
of electrically charged supersymmetric solutions have been compared with the
properties of the states in string theories (Sen, 1995) and many of the electrically
charged solutions have been interpretted as string states (Duff and Rahmfeld,
1995). In string theoryN = 2 SU(2) supersymmetry has been analyzed (Bank
et al, 1996; Bergman and Fayyazuddin, 1998) as the low energy theory on a
Ds-brane probe in the background of an orientified 7-plané (

This paper is organized as follows. In section 2, we have analyzed the structure
of scale invarianiN = 4 theory in the absence of hypermultiplets and interpret
the singularities. In section 3, we have carried out the study of moduli space
vacua in four-dimensiona&l = 4 supersymmetric theory with gauge group SU(2)
and analyzed its kinematics at classical as well as quantum levels. Analyzing the
monodromies around singularities in quantum moduli space, the spectrum of BPS
states of dyons have been obtained in weak coupling reBigrand the strong
coupling regionsRs and it has been shown that in the absence of hypermultiplets
(i.e., quarks) the weak coupling spectrum contains all dyonsl) while the
strong coupling spectrum consists of monopoles (0, 1) and dyonrsl{l,t has
been demonstrated that, in the presence of hypermultiplets, the duality in the
theory with nonzero bare masses is really an electric-magnetic-flavor duality. It
is shown that folN; = 1 (single flavor) the theory exhibit&;-symmetry, and the
massless states (0, 1%, 1), (1, 1), and<{2, 1) exist both in the weak and strong
coupling regions. It has been shown that the strong coupling regior\fef
2 case, consists of only on&-pair incorporating monopoleg(0, 1) and dyons
+(£1, —1) while that forN; = 3 case it consists of dyoras(—1, 2),+(1, —1) and
monopolest(0, 1). Identifying a e, hm) hypermultiplet of dyonic state in the
probe theory as anf, ny,) string stretched between thg{brane probe and a 7-
brane, it has been demonstrated that two hypermultiplets, which become massless
atthe two singularities il = 4 SU(2) supersymmetric theory, correspond to open
strings beginning on thedabrane and ending on the respective 7-brane. It has also
been shown that other than these two multiplets, all the BPS states, including
W-bosons, correspond to multipronged strings connecting thler&ne with the
two 7-branes.
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2. CURVE FOR SCALE INVARIANT N =4
SUPERSYMMETRIC THEORY

Inthe absence of bare masses, this theory is conformally invariant. This theory

has a dimensionless coupling constant (Witten and Seiberg, 1994),
0 A i
=— 4+ —. 2.1

T o7 + 7 (2.1)
Therefore, in the curvg? = F(x, u, m;, 7) that controls the low energy behavior,
the coefficients are functions af that must be determined. This contrasts with
N; < 4 where, instead of, one has the renormalization scale dimensional
analysis ensures that the dependencé\de polynomial, so that there are only
finitely many parameters to determine.

We assume the massless case for finding the right family of curves for the
conformally invarianttheory, thatis when the bare massis zero. In this case classical
formula

a(u) = v2u,
(2.2)

D a 0 n dnm a
=T = . —_— y
& 2r g°
is exact. So we wish to find a curve
y? = F(x, U, 7),
such that the differential form
V2 dx
w=-——,
Ty
has the periods?), %) with (ap(u), a(u)) given by Eq. (2.2).
Now, a genus one curve E and a differential form with periods a multiple, df)(
can be found as follows. Let E be the quotient of the complplane by the lattice
generated byr andrwt. Letwg = dz Obviously, the periods aby arer andn z,
integrated on contours that run from Ostcand from O tar z.
For analyzing an algebraic description on E, one introduces the Wieerstrass
g function, which obeys

92 =p@z+1)=p(z+7)=p(-2), (2.4)

and has for its only singularityroE a double pole at the origin. If one sets=
©(2), Yo = 9'(2), then one finds

V& = 4x3 — ga(tX0) — 93(7), (2.5)

2.3)

where
02 = 601 *Gy(r),
Gs = 1407 ~°Gg(),
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andGy, Gg are the usual Einstein series

Ga(r) = Z (mr (mz +n)*’

m,nezo

(2.6)
Golm) = Z (mr (mt +n)s’

m,nez.

which defines modular forms for SL (Z) of weight 4 and 6, respectively. Since
the definition ofxg andyp was such thay, = ‘L—’f, one can also rewrite

d
wo=dz as wp= 2. @2.7)
Yo
Now, set
X = X = Ly
= XoU y= ZYOU
and (2.8)

V2/u V2 dx
wy=— —.
2 47y

The equation for the curve becomes

1 1
y? =% = 20(r)xU — 2 ga(r)u’. (2.9)

This change of variables and in particular the normalizatianiefmotivated by the

following requirement. For weak coupling (~ ico) we should recover our curve

y? = Fo(X, u) = x?(x — u). Itis easy to check from the asymptotic behaggr=

34 0(a),9s = £ + O(q) thatafter replacing in Eq. (2.9) byx — 4/3 we findF.
The period ofw is now%\/m for N = 4 and, one has

a(u) = v2u,
ap(u) = ra,

as desired. We have determined the curve for the massless theory. The coefficients
are in modular forms. This test is equivalent to the fact that the metric of the
classical theory is S-dual, which is one of the traditional pieces of evidence for
S-duality.

We recall thatN = 4 symmetric Yang—Mills can be regarded¥s= 2 super
Yang-Mills theory with an additional matter field that is a hypermultiplet in the
adjoint representation of the gauge group. One can give a barermass that
hypermultiplet, explicitly breakindN = 4 to N = 2. We analyze the theory for
gauge group SU(2). For weak coupling regjgh< 1, withm £ 0. There is one
singularity atu ~ %mz where a component H of the elementary hypermultiplet

(2.10)
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is massless. This gives a monodromy conjugat&4oSince the elementary hy-
permultiplet forN = 4 has twice the electric charge of the hyperdoublets. As a
hyperdoublet gives monodroniy, and the one loop beta function, which deter-
mines the monodromy is proportional to the square of the charge, the massless
H particle would give monodromy 2 in the conventions oN = 4. In addition,

at an energy of ordefo ~ q/%m, the theory evolves to a strongly coupled pure

N = 2 gauge theory. This theory has two singularities, associated with massless
monopoles, with monodromies conjugateTté. So altogether, we get three sin-
gularities, each conjugate fb?. These three singularities are permuted under
monodromies irg andm. This is a reason thl = 4 conventions in which they

are all conjugate td@? are preferable to thék # 0 conventions in which one is
conjugateT 4 and the other t@ .

This analysis is valid for very weak coupling. Could it be, for instance, that
what we described above as one conjugafk,tseparated by an amount that van-
ishes for weak coupling. SL (Z) group theory alone would permit this, but it is
impossible because each of the singularities arises when a single hypermultiplet
becomes massless. So we are looking for a family of curves

Y2 = F(x, u), (2.11)

(with cubic F) that asu varies has precisely three singularities each conjugate to
Y2. There is a singularity aip with monodromyT" for n > 1 (will be 2) if and
only if for somexo,
Fo0F_9F g (2.12)
fa au

atx = Xg, U = Up. EQ. (2.12) means that the curi#x, y) = 0 has a singularity
at (Xr U) = (Xo, uO)-

We analyze a plane cubic curtx, u) = 0 with three distinct singularities.
The possible singularities of a plane cubic curve can be completely classified. If
isanirreducible polynomial, there is at most one singularitly; F», with F; linear
in x andu and F, quadratic and irreducible, there are precisely two singularities
(perhaps at infinity), namely the points whdfe= F; = 0. The only way to get
three singularities is to have = F;F,F3, where the three factors are linear; the
three singularities are the poin& = F; = 0 for any two distinct and j. For
reproducing the knowm = 0 limit of F, the F; must be (up to a scalar multiple
and a permutation df) F; = x — gu — F;, whereF; are the functions ofn and
7 only and vanishes ah = 0 ande being the roots of the cubic polynomial (2.5)
obeye; + & +e3=0.

Moreover, by adding constants (that is, functionsrofndt only) to x and
u, one can eliminate two of thi . Since we did not assign any physical meaning
to x we can take the freedom to shift it. However, we want to preserve

u= (T, ¢?). (2.12a)
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Therefore, we will denote the shiftedby {i. To keep symmetry under permuting
theeg, we shiftx andu such thatf; = e;z f. Then the equation of mass-deformed
N = 4 theory becomes

y = (x—eli—€f)(x — el —&f)(x — esli — ), (2.13)

the relation between and (i is determined by examining the theory at weak
coupling; i.e., in the limitr — ioco. In this limit we should reproduce on weak
coupling curvey? = Eg = x?(x — u). This motivates us to change variables to
1
i=u—=-¢gf

2 (2.14)

1 1
X=X——-eu+ —€f,
23 +21

in Eq. (2.13). The family of curves becomes
y? = (X — CuU)(X + CoU — Cy(C1 + &) F)(X — U + Co(Cp + o) ),  (2.15)
with

3 1
C1= € and ¢ = E(es — ).

In this form it is easy to study the weak coupling limit. For a smooth lirfijt=
f(r = io0) should be finite. Using;(r =ioco) =1 and ¢(r =ioco) =0, the
exact curve (2.15)

y? = Fo = X3(x — u),

as required. And so in the form (2.15) the family of curves is expressed in terms
of Eq. (2.12a).

We can relatefy = f(r = ioco) to the mass by examining the singularities of
(2.15). The roots of the equation arexat= cf andxp,3 = Cx(—U + (1 £ ) f).
A singularity occurs whew; = x;. This occurs for

3
U =28 f=cif,
(2.16)

1
Up 3= ié(es —e)f =+£cf.

In the weak coupling limitc; &~ 1, ¢, ~ 8qY/? and haveu; ~ fy and w3~
+8qY/2 fo. We interpret the singularity at; as associated with the massless el-
ementary field. It should be at= m/+/2. For weak coupling and in thid = 4
normalization this is atl ~ Ja? = m?/4.

Therefore

fo = f(t:ioo):n;. (2.17)
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The other two singularities at; , ~ +8q'/2 fy are interpreted as the two singu-
larities of the low energy pure gaudé = 2 theory. More precisely, we can now
take the scaling limigg — 0, fo = mTZ — o0 holding A? = 2qY/?m? fixed. In this
limit, Eq. (2.15) becomes

y2 = (x — 4)(x* — A%, (2.18)

which is exactly the curve of the expected low energy pure galge?2 theory in
the N = 4 conventions with scala. The curve (2.13) governing the low energy
behavior of the mass-deformét = 4 theory can be written as

2 _ o ~_1‘ 2 o ~_} 2 _ ~_1‘ 2
y_<x el 4efm>(x el 4%m)(x esli 49%m), (2.19)

with
1

1
f= Zmz’ and u=(Trg? =0+ ée1m2. (2.20)

This formula is completely SL (Z) invariant; the coefficients are modular forms.
Since the formula is not limited to weak coupling, this SL £,invariance is a
genuine, new, strong coupling test of SL &), invariance of theN = 4 theory.

3. QUANTUM MODULI SPACE AND MONODROMIES AROUND
THE SINGULARITIES IN N =4 SUPERSYMMETRIC THEROY

The classical potential dil = 4 supersymmetric theory in the absence of
hypermultipletsN; = 0 is

V(@) = lg%tr{«bi )@ 65, (3.)

whereg is the Higg’s field andy is the gauge coupling constant of the underlying
microscopic theory. As long ag and¢™ commute, this potential vanishes even
for the nonvanishing expectation valueggf

(0|9|0) =a # 0.

It shows that the theory has a continuum of gauge in-equivalent vacua called the
classical moduli space parameterized by

1
u=trgig; = Ea2, (3.2)
where for SU(2) gauge group, we have set
1
¢ = _a031

2
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(1 o0
0’3—0_1.

For genericg, the low energy effective Lagrangian containing a siniyjle= 4
vector multiplet may be expressed in terms of holomorphic function

with

1

F(a) = Efclazy (3.3)
wherez, the classically effective coupling constant in the vacuum parameterized
by a, is defined as
8ri  9°F
gz - aaz !
The dyonic charge and mass for BPS states may then be written in the following
forms (Singh and Rajput, 1999b) respectively;

(3.4)

Tel =

4= (e, M) = V2 (ne _ Sg—fnm) — VENe—a),  (35)

and
M = a|q| = av/2ne — toiNml, (3.6)

wherene andnp, are electric charge and magnetic charge numbers respectively.
In coulomb phase, the gauge theory has massless photon and hence it is
subjected to standard electric—magnetic duality

= (o) = (N9 = ——-q = . @3.7)
which incorporates the inversion &f. On the other hand under the duality trans-
formation

Tg— T+ 1 (3.8)
we have
d = (Ne, Nm) = (Ne — Nm, Nm) =4 (3.9)

The transformations (3.7) and (3.8) generate an infinite duality group Z0)(2,
The quantum theory also has a vacuum moduli space, the metric on which is
Kahler metric which may be written locally as

ds? = —ié(daodg— da dap), (3.10)

where
_0F

= (3.11)

ap
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Then Eqg. (3.6), for mass of BPS state, may be written as
M = /22|, (3.12)
where
Z = ane — apnp, (3.123)

is the central charge of the supersymmetric algebra. Hésaelated byN = 4

theory to the semiclassical photon whég is related to its dual “the magnetic
photon.” The existence of a BPS stat,(ny) atu in the moduli space implies

the existence of another BPS statg, (0;,) atu’ whenu andu’ are related by a
global symmetry acting on the moduli space, and the electric and magnetic charge

numbers are related as
/
<%>=G(%), (3.13)
nr, Nm

where matrixG € SL(2, Z), generated by transformations (3.7) and (3.8), and
there exists a phag®’ such that

(G)-we(s) o

The explicit form ofa(u) andap(u) in terms of the period of a meromorphic
differential of the second kind on a genus surface can be written from Eq. (2.18) as

y? = (x2 = A (x —u), (3.15)

whereA is the dynamically generated mass scale. This form gives a double cov-
ering of the plane branches-a\? andoo. On these cuts the correctly normalized
meromorphic one-form for this torus is

A ﬁ/ dx(x —u) _ A\/_ dx(x — u/A2)Y/2
2n y JoE-1)
which yields
A2 Ldt/S —
aw =" [ TS
and
u/A2 /4
%w)lhrf ,f%? (3.16)
or
AV2 (At
a(u)+aD(u)=T/ dt i—tZ'
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Representing these integrals in terms of the usual hyper-geometric function

1 1
F(av /3! Vs X) = m ‘/0 (1 — t)V_ﬂ_ltﬁ—l(l _ Xt)_a dt,

whereB(8, y — B) is the usual beta function, we get (Singh and Rajput, 1999b)

[UrAZ_( 11 2
a - F __1_!1;— ’
W 2 < 2’2 l+u/A2)

u—AZF(l 1 _1—u/A2>

(3.17)

ap(u) =i > 2;

2’2 2

Near the point at infinity the asymptotic behaviors of these functiongfer 1

are given by
fu
a(u) ~ >

: (3.18)
ap(u) ~ —v2u[lnu+3 In2-2].
b
Near the branch point = +1 andu = —1 (for A = 1), the asymptotic be-
haviors of these functions are respectively given by the following sets of
equations;

i 1+4+u u+1, .
a(u) E[(u+1) In( 5 >+ 5 (—|n—4ln2+3)],
(3.19)
i 1 1 1
aD(u)N'_ _1+u In tu +u+ (1+41In2)—4],
i 2 2 2
and
2 1 /1-u u-121
a(u) ;+Z( 5 >[In 5 +1—4In2},
u—1
ap(u) ~ IT' (3.20)
From Egs. (3.4) and (3.11) we have
. 2
aaD IF l1111-1“_[\2
== TEILE) @21
a  F(z3 L)

which blows up at the cuts = +A2.
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Let us inverta = a(u) asu = u(a) and then integrate Eq. (3.11) to get the
holomorphic functior(a). If a matrixI" € SL(2, Z) is taken as

_(« B
F_(y 5), (3.22)
then
aj = aap + fa, a' = yap + 84, (3.22a)

which gives the following transformation of the period matrix;
1 Btam
1= 5,

d+ytu

These relations yield the following modular transformation of the homomorphic
function F(a);

(3.23)

F'(a) = Fr(@) = %,38&2 + %ayaé + By aap + F(a) (3.24)

For the transformation matrix

S= 0 1 , 3.22b
(22 9) (3.220)

corresponding to the transformation (3.7), Eqgs. (3.22), (3.23), and (3.24) give

ay=ay=a a =a’5=—ap, (3.25)
T =131 = —1/m1, (3.26)
and
F'(a) = Fs(a®) = —aa + F(a). (3.27)
Similarly, for the transformation matrix
11
T= (0 1), (3.22¢)
corresponding to (3.9), we have
p=ap=ap+a a=a =a (3.28)
=1, =1+, (3.29)
/ T l
F'@=F@)= Eag + F(a). (3.30)

The transformation (3.7) incorporates the transformation of an electric charge (1, 0)
to a monopole (0, 1), i.e., it leads to the monopole-region. On the other hand, the
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transformation (3.9) incorporates the transformation of a monopole (0, 1) to a dyon
(-1, 1), i.e., it leads to the dyon-region. Equations (3.25) and (3.28) show that in
the monopole and dyon regions the natural independent variables to be used are

a™ =ap, and a¥ =ap - a,

respectively, with the corresponding prepotentiﬁlgm") and ng)) given by
Egs. (3.27) and (3.30) respectively.

Monodromy is a transformation of the parametes %az of the quantum
moduli space to the poiniy where the mass of BPS state, as given by Eq. (3.12),
vanishes. Thus the values aofy( ) of the massless particle at singularity are
determined by the monodromy around the singularity, i.e.,

Ned — Nap = 0. (3.31)

The moduli spacé may be divided in two regiofks and Ry by a curveC of
marginal stability, i.e.,

C:{ueM/Im(%):O}, (3.32)

The region insideC is the strong coupling regioRs while the region out side
C is the weak coupling regiolRy. If two point u andu’ in M can be joined
by a continuous path iM without crossingC, then one can transforminto u’
without changing the spectrum. For instancey'it= ug (where the mass of BPS
state vanishes), then we have

(?) = M(ne, nm)<2‘°>, (3.33)
where
1+ 2nenp 2n2
M(ng, Nm) = , 3.34
(M. Nm) ( —2n2  1-2nenp (3:34)

without changing the spectrum. The cutvef Eq. (3.32) looks like an ellipse. The
massless BPS states can exist only on this curve and hence the monodromy trans-
formation can be constructed only on this curveuAt A? = 1 the monopole is
massless and at= —A? = —1 the massless state is dyonic describetids —1)

if we approachu = —1 from upper half plane or a&(1, 1) if the pointu = —1

is approached from the lower half plane. As such the monop¢le 1) and the

dyon either ast(1, 1) or ast(1, —1) do exist in bothRy, and Rs and there is no

other state irRy andRs that becomes massless@rsince there are precisely two
singularitiesy = 1 andu = —1, where

@zilor(l
a
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At the singularityu = 1, the asympotic relations (3.19) gives Au: OK?
ap — ap = ap,

and (3.35)
a— a =a- 2ap.

Comparing these transformations with that given by Eg. (3.33), we get the follow-
ing monodromy matrix afl = 1

10
M; = (_2 1). (3.35a)
This monodromy arises from a massless monopole (0, 1). Under this monodromy
we have the following transformation of charges:
d = (Ne, Nm) = (Ne, Nm + 2ne) = 4. (3.35b)

Similarly, by using relations (3.20), we get the monodromy matrix

M_f=<:; g), (3.36)

atu = —1. Under this monodromy
g = (Ne, Nm) = (2Nm — Ne, 3N + 2Nne) = (. (3.36a)

This monodromy arises from the vanishing mass of dyon-), The mon-
odromy matrix au = o is

-1 2
which incorporates the following transformation of charge
q = (Ne, Nm) = (—Ne — 2nm, —Np), (3.38)

showing that at infinity a monopole (0, 1) gains the electric charge and becomes
a dyon (2, —1). Monodromy at infinity implies that there must be an additional
singularity somewhere in-plane.

From Egs. (3.35), (3.36), and (3.37), we obviously have

MiM_; = M. (3.39)

These matrices form the subgrolif?) € SL(2, Z). In looping aroundi = 1 and

u = —1, the pair ép, a) are transformed by monodromié4, andM_; and the
chargestie, Nm) are transformed accordingly. But the spectrum of BPS saturated
states is nof'(2) invariant. This lack of duality in the spectrum can be resolved if
the curve, on whiclap; is real, looks some thing likl| = 1. Then one can avoid

the jumping phenomena only if one stays in the region 1. The only monodromy
that can be seen in that region\k,,, under which the spectrum of BPS saturated
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states is invariant. Whatever particles becomes massless-at1 must evolve
continuously from the BPS-saturated states that can be seen semiclassically near
infinity.

The strong coupling regioRs contains exactly two BPS states, the monopole
(0, 1) and dyon (1, 1) or (1-1) that becomes masslessuat= A% or u = —A?
while all dyons @, 1), wheren is in integer, exist in the weak coupling regi&),
(Singh and Rajput, 1999b).

All the results of this section foN; = 0 can be generalized to the general
N = 4 supersymmetric Yang Mills theories with gauge group SU(2) when the
hypermultiplets are present. In the presencBidfavors withmy as the bare mass
of hypermultiplets Qs, Qs), the Eq. (3.12a) for quantized central charge may be
generalized in the following form

1 &
Z =ahe — apnm + — mes:, 3.40
e m \/é; f ( )

wheres is the quark number charge. In this case we have a singular point when
(Singh and Rajput, 1999b)

a==+ m_ o
=t 5=
which corresponds to quark becoming massless. The monodromy transformation
around this singularity is

a—a=a,
my (3.41)
—ata-ag=a+a—-—=ap,
ap — ap a = ap NG ap
showing that the pairag, a) is not simply transformed by SL(Z) but they also
pick up the additional constant;. In the strong coupling region, the charges

contribute toa also. Under the transformation (3.41), we obviously have

§ =Nm+s,
n. = Np, (3.42)

m
/
ne = Ne — N,

showing that the duality in the theory with nonzero bare mass is really an electric—
magnetics; duality.

In Nt = 1 case, the moduli space of vacua is homomorphic to the compactified
complexu-plane, and the SU(2) gauge group is broken down to U(1) on the
coulomb branch which exhibitgz-symmetry. The Higg’s branch is absent in this
case. For vanishing bare masses, the torus is

y? = x3—ux? — A?/64, (3.43)
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with da,gl)/d uandda®/du as its period integrals. Here the weak coupling region

Ry contains all dyons(, 1) as well as elementary quarks and W-bosons while the
strong coupling regiorRs contains the monopole&(0, 1) and dyonst(—1, 1)
and+(2, —1). ForN; = 2 case, in addition to Coulomb branch, the moduli space
also has a Higg's branch on which the gauge group is completely broken. The
strong coupling regiorRs in this case contains only ong&,-pair incorporating
monopolest(0, 1) and the dyons:(+1, 1). ForN; = 3 case, the equation of the
torus for vanishing bare mass is

y2 = (X — u)(x% — X + u). (3.44)

Here the strong coupling region contains the dygifs-1, 2) and+(1, —1) and
the monopolest(0, 1) while the weak coupling region contains the dyamslj
and (2 + 1, 2) for all integem.

4. BPS SPECTRUM OF DYONIC STATES IN STRING THEORY

In general arfe, Ny) hypermultiplet dyon state in the probe theory corresponds
to a (ne, Nm) String stretched between thgdbrane probe and a 7-brane. Such state
exists as long as there exists a path P along which the total monodromy transforms
the (e, Nm) charge of the string to the charge of the 7-brane. This state is BPS state
if the path corresponds to a4, n,) geodesic and it minimizes the mass given by

M == \/\T(ne'nm)ds, (4.1)
P
where
1
Tne.nm) = Wlne — Nl (4.2)
T

is the tension ofrfe, Ny) string with ¢ as string coupling which corresponds to
effective coupling constant defined by Eg. (3.4) and (3.21). Mheng,) charges of

the string may change along the path P according to transformations (3.7) and (3.9)
if this path does not pass through any of the singularities. In case of singularities
atu = A% andu = —A?, these charges will change according to transformations
(3.35b) and (3.36a) respectively. Rgr = 0, the metriads? is given by (Bergman

and Fayyazuddin, 1998)

n?(z) ?

ds’im Z - Z1)(Z - Z,)]7Y?d7] 4.3
(r) W[( 1)( 2)] (4.3)
whereZ; = 4A? andZ, = —4A? are the positions of (0, 1) and (1, 1) 7-branes,

respectively.
Using relations (3.4) and (3.21), in Eqg. (4.2), we have

T(ne,nm) dS = [neda — nmdap, (4.4)
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which implies that the geodesic fang ny,) string is

d

a dap da
Ne at + Nm

W = (ne — nmf) a = C, (45)

whereC is constant. For topologically trivial path which does not go around
7-branes, the solution of this equation is

nea{Z(t)} — nmap{Z(t)} = C(t — 1), (4.6)

whereZ(0) = u s the position of the Bbrane and’ (1) is the position ofife, N,)
7-brane. The mass can then be calculated as

M = +v/2|C| = v2|nea(u) — nmap(u)|,

which is identical to Eqg. (3.12). The only states which correspond to topological
trivial geodesic are (0, 1), (1, 1) hypermultiplets, as the charges of 7-branes. This is
consistent with the result, obtained in the previous section, that the BPS spectrum
in Rs region consists of only (0, 1) and (%1) massless states.

W-bosoni.e., (1, 0) state, corresponds to a pair of fundamental strings begin-
ning on the R-brane and ending on thé-plane. Quantum corrections deform this
background in to two separated 7-branes with charges (0, 1), and (2, 1) and at the
same time the W-boson state is deformed accordingly. Most likely possibility is
that it is deformed into four-pronged strings with external prongs (1, 0), (1, 0), (O,
1), and (2, 1) and aninternal prong (1, 1) such that the first two external prongs end
on the y-brane, and the last two end on the corresponding 7-branes. Supersym-
metry requires that the two (1, 0) strings be parallel at the location of {Haréne.

This condition is satisfied for the four-pronged string configuration if the internal
(1, 1) string shrinks to zero length. Denoting the locations of (0, 1) 7-brane, (2, 1)
7-brane and the Pbrane byZ,, Z,, andZ3 respectively, and the location of the
two coincident junction points by, we have following three geodesic

P.: ap{Z(ty)} = cat1 + ap(u),
P, —2a{Z(t;)} — ap{Z(t2)} = cot, — 2a(u) — ap(u), 4.7)
Ps:  a{Z(t3)} = cstz + a(u),

wherety, t,, andts respectively parameterize the geodesics for (0, 1), (2, 1), and
(1, 0) strings and, = O corresponds to the position of junction whije= 1 cor-
responds to the position of the brane. In Eqgs. (4.7) we have set up

Cy = —ap(u),
Cz = 2a(u) + ap(u) (4.8)
Cs = a(Zsz) — a(u),
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and
Ned — Npmap = 0,

at the location oftfe, Nm) 7-brane. Because of the orientation of (1, 0) string at the
flat space, the supersymmetry requires that

Ci C G

B 4.9
ICil 1G] 1G] *9)
Using EQs. (4.8) and the first equality of (4.9), we have
ap(u)
=0, 4.10

m a(u) (4.10)
and

ap(u)

> -2 4.1
TR (4.10a)

which requiresi to be on the curve of marginal stability defined by Eq. (3.32).
Equations (4.8) and the second equality of (4.9) imply that

a(Zs)
OR 0, (4.11)
and
a(Zs)
) > 1, (4.11a)

showing that the poinE; lies in weak coupling regiofry. In other words, the
state corresponding to the four-pronged string is BPS-state only whienaDe is
in Ry region. At Z; = u, the Ds-brane is exactly on the curve of marginal stability
and then the (1, 0) prongs will degenerate and the remaining (0, 1) and (2, 1) strings
will separate along the $brane.

The total mass is the sum of four individual prong masses;

M = |Cq| + |Cy| + 2|C3]
= V2ja(Z3)|,

which is the BPS mass of the W-boson.

In addition to W-bosons and the two hypermultiplets (0, 1) and (1, 1), the
BPS spectrum ifRy-region also includes hypermultiplets carrying chargedj
with n > 1. These states can be obtained from (0, 1) and (1, 1) states by applying
the monodromy transformations (3.35b) and (3.36a).
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5. DISCUSSION

The Eq. (2.13) describes the equation of mass-defoixhed4 theory which
may be written as Eq. (2.15) by changing the variables given by Eq. (2.14). This
equation further reduces to the form given by Eq. (2.18) under conditions de-
scribed by Egs. (2.16) and (2.17). Equation (2.18) is the curve of the expected
low energy pure gaug8l = 2 theory in theN = 4 convention. In the absence
of hypermultiplets, the explicit forms & andap given by Eq. (3.33) in terms
of hypergeometric functions show that the branch paints 1 andu = oo are
the singularities of the moduli space, for which the monodromy matrices given
by Egs. (3.35a), (3.36), and (3.37) generate the transformations of paranoéter
guantum moduli space to another point at which the BPS state become massless. It
shows that the singular points of moduli space are associated with extra massless
particles. Monodromy, given by Eq. (3.35a) arises from the massless monopole
of charge (e, nm) = (0, 1) and the corresponding transformations (3.35b) trans-
forms the electron (0, 1) near= 1to a dyon (1, 2). The monodromy (3.36) arises
from the vanishing mass of dyon-(, 1) and the corresponding transformations
(3.36b) transform an electron to a dyonl(, 2) and a monopole (0, 1) to a dyon
(—2, 3). Under the monodromy (3.37) at infinity, the charge transforms according
to Eg. (3.38) showing that at this singularity a monopole (0, 1) gains the elec-
tric charge and becomes a dyonZ, —1). This monodromy at infinity implies
that there must be an additional singularity somewhereptane. For instance,

a monopole becomes massless at a point wagre 0 while a # 0 and a dyon
with charge 1, 1) becomes masslessif+ ap = 0 whilea, ap = 0.

The matrices, given by Egs. (3.35a), (3.36), and (3.37) are the three generators
of monodromies at the points= 1, —1, andoo respectively, where the complex
u-plane is punctured. The paiag{, a) forms a holomorphic section of SL(2, Z)
bundle over the puncturadplane. These matrices generate the subgit(@) €
SL(2, Z) of 2 x 2 matrices congruent to unit matrix modulo 2. In fadt, and
M; do penetraté’(2). Theu-plane punctured at 1;1, andoo can be thought of
as the quotient of the upper plakg'T'(2). The family of curves parameterized by
H/T'(2) can explicitly be described by Eq. (3.15), for= 1, which is symmetrical
under the mapping

u— —Uu, X —> —X,y — iy.

These transformations generaigsymmetry, but only it¥, quotient acts on
u-plane. In looping around = 1 andu = —1, the pair §,, a) are transformed by
the monodromie®$/; andM_; and the chargesi{, ny) are transformed accord-
ingly. But the spectrum of BPS saturated states idt{@) invariant. This lack of
duality in the spectrum can be resolved if the curve, on whijgta is real, looks
something likglu| = 1. Then one can avoid the jumping phenomena only if one
stays in the regiom > 1. The only monodromy that can be seen in that region
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is Moo, under which the spectrum of BPS saturated states is invariant. Whatever
particles become masslessuat +1 must evolve continuously from the BPS—
saturated states that can be seen semiclassically near infinity. It follows from the
foregoing analysis that the entire BPS spectrum in strong coupling as well as weak
coupling regions can be accounted for ig-Brane probe picture, either as open
strings or topologically geodesics between thelibane and a single 7-brane, or

as multipronged strings connecting thg-Brane to both 7-branes. The former cor-
respond to hypermultiplets carrying charges (0, 1) and (1, 1) and exist everywhere
in the moduli space. The latter correspond to the W-bosons and hypermultiplets
carrying chargesn 1) for (n > 1), and exist only in the weak coupling region
(i.e., out side the curve of marginal stability). It has also been shown here that for
W-boson the multipronged string is the unique BPS representation and there are
no topologically nontrivial geodesics beginning and ending on thémne.

ACKNOWLEDGMENT

One of the authors S. C. Joshi is thankful to DSA/COSIST (New Delhi) for
providing financial assistance.

REFERENCES

Argyres, P. C., Plesser, M. R., Seiberg, N., and Witten, E. (199&}lear Physics B61, 71.

Bank, T., Douglas, M. R., and Seiberg, N. (1998hysics Letters B88 278.

Bergman, O. and Fayyazuddin, A. (199R)clear Physics 531, 108.

Bilal, A. and Ferrari, F. (1996Nuclear Physic€80, 589.

Callan, C., Harvey, J., and Stominger, A. (199)iclear Physics B59, 611;367, 60.

Duff, M. J. and Rahmfeld, J. (1995physics Letters B45, 441.

Gauntlett, J., Harvey, J., and Liu, J. (1998)clear Physics B09, 363.

Gukoyv, S. and Polyubin, I. (1997hysical Letters 891, 115.

Intriligator, K. (1994).Physical Letters BB36, 409.

Intriligator, K. and Seiberg, N. (1994Nuclear Physics B31, 551.

Joshi, S. C., Pandey, V. P., and Rajput, B. S. (20B@)gress of Theoretical Physi¢Submitted).

Joshi, S. C., Pandey, V. P., and Rajput, B. S. (20RLlear Physics BSubmitted).

Khuri, R. R. (1992)Nuclear Physics B87, 315.

Rajput, B. S., Chandola, H. C., and Rana J. M. S. (190Mysical Review D: Particles and Fields,
3550.

Seiberg, N. (1994 Physical Review D: Particles and Feild®, 6557;50, 1094.

Seiberg, N. (1995Nuclear Physics B35 129.

Seiberg, N., Intriligator, K., and Leigh, R. (1994#€)hysical Review D: Particles and Feil&@®, 1052.

Sen, A. (1977)Physical Review D: Particles and Feil&&, 2501.

Sen, A. (1995)Nuclear Physics B40, 421.

Singh, M. P. and Rajput, B. S. (1999&)dian Journal of Physicg3A, 425.

Singh, M. P. and Rajput, B. S. (1999Brogress of Theoretical Physid®2 843.

Terashima, S. and Yang, S. K. (199Physics Letters B91, 107.

Witten, E. and Seiberg, N. (1998luclear Physics B26, 19;431, 484;430, 485.



